# IEEE ICMA 2022





## Custom Sine Waves Are Enough for Imitation Learning of Bipedal Gaits with Different Styles

Authors: Qi Wu\*1, Chong Zhang\*2, Yanchen Liu³

<sup>1</sup>Department of Mechanical Engineering, Tsinghua University

Corresponding: Qi Wu, wuqi19@mails.tsinghua.edu.cn

Presenter: Chong Zhang



<sup>&</sup>lt;sup>2</sup>Department of Precision Instrument, Tsinghua University

<sup>&</sup>lt;sup>3</sup>Department of Informatics, Technical University of Munich

<sup>\*</sup>Equal contribution

- Deep Reinforcement Learning (DRL)
  - A new solution to legged locomotion
  - An easy solution to dynamics modelling



[Miki, T., et al. Science Robotics, 2022]



[Li, Z., et al. ICRA 2021]





- DRL implementation for bipedal gaits
  - End-2-end learning: time-consuming
    - Dozens of hours for training [Siekmann, J., et al. RSS 2021, & ICRA2021]
    - GPU-based simulation hasn't shown enough fidelity for bipedal robots.
  - Motion imitation: costly mocaps or manually tuned references
    - Human motion capture is costly and anthropomorphic.



Human motion capture: costly, limited styles, anthropomorphic!



Bohez, Steven, et al. Imitate and Repurpose: Learning Reusable Robot Movement Skills From Human and Animal Behaviors.

- DRL implementation for bipedal gaits
  - End-2-end learning: time-consuming
    - Dozens of hours for training [Siekmann, J., et al. RSS 2021, & ICRA2021]
    - GPU-based simulation hasn't shown enough fidelity for bipedal robots.
  - Motion imitation: costly mocaps or manually tuned references
    - Human motion capture is costly and anthropomorphic.
    - Manually tuned references require lots of expert knowledge and efforts.



#### Manually tuned reference: cheaper than mocaps, requiring knowledge and efforts

#### Spring Mass Model



Green, Kevin, et al. "Learning spring mass locomotion: Guiding policies with a reduced-order model."

#### Other choices:

Manually tuned controller: Xie, Z., et al. IROS 2018

HZD gait library: Li, Z., et al. ICRA 2021

. . .



- DRL implementation for bipedal gaits
  - End-2-end learning: time-consuming
    - Dozens of hours for training [Siekmann, J., et al. RSS 2021, & ICRA2021]
    - GPU-based simulation hasn't shown enough fidelity for bipedal robots.
  - Motion imitation: costly mocaps or manually tuned references
    - Human motion capture is costly and anthropomorphic.
    - Manually tuned references require lots of expert knowledge and efforts.
    - Gait styles are limited to the references and difficult to tune.
  - Massive expert efforts for reward & hyperparameter tuning



- Our motivation
  - Can the references be cheap and easy to obtain?
    - A sine wave suffices!
  - Can the rewards be easy to tune?
    - Few reward terms without special efforts to tune!
  - Can the learning process be efficient?
    - As efficient as those with manually-tuned references!
  - Anything else?
    - Deploy a very simple system and focus on skill learning, as suggested by previous works [Siekmann, J., et al. RSS 2021]: sim2real and skill learning can be separately treated.



- The very simple reference
  - Easy to generate
  - Easy to tune the styles



- The walking styles
  - $h \Delta h$  for foot clearance: higher or lower
  - $\frac{\Delta h}{h}$  for double-support span: also faster or slower feet up and down
  - T for frequency: higher or lower

$$h_{\text{ref}_1} = h_{\text{left}} = \max(0, h \sin(\frac{2\pi}{T}t + \phi_0) - \Delta h),$$

$$h_{\text{ref}_2} = h_{\text{right}} = \max(0, h \sin(\frac{2\pi}{T}t + \phi_0 + \pi) - \Delta h).$$



The very simple system





The very simple rewards

[Peng, X. B., et al. SIGGRAPH 2018]: joint position, joint velocity, end-effector position, and CoM position (4) terms for imitation; task specific terms for performance

[Xie, Z., et al. IROS 2018]: joint position, pelvis position, and pelvis orientation (3) terms for imitation; shin spring term for regularization

[Li, Z., et al. ICRA 2021]: joint position, pelvis position, pelvis translational velocity, pelvis rotation, and pelvis rotational velocity (5) terms for imitation; 2 terms for regularization

Ours: 1 term for imitation, 2 terms for performance, 1 (but can be more) term for regularization and 1 term for early termination



- The very simple rewards:  $0.5r^I + 0.5r^P + r^R + r^T$ 
  - Imitation:

• 
$$r^{I*} = \exp(-\frac{\operatorname{dist}^2(h_{\operatorname{ref}},h_{\operatorname{foot}})}{0.05^2})$$
,  $r^I = \frac{r^{I*}-0.4}{1.0-0.4}$ : a penalty for surviving without pursuing imitation

• Performance:

• 
$$r^P = 0.75 \exp\left(-\frac{\operatorname{dist}^2(v_{\text{pelvis}}, v_{\text{command}})}{\max(0.1^2, 0.5 \|v_{\text{command}}\|^2)}\right) + 0.25 \exp\left(-\frac{\operatorname{dist}^2(ori_{\text{pelvis}}, ori_{\text{standing}})}{0.1}\right)$$

Regularization:

• 
$$r^R = 0.1 \exp(-\frac{\text{dist}^2(q_{\text{shin}}, \mathbf{0})}{0.001})$$

- Termination:
  - $r^T = -10$  if early termination else 0: triggered when fall or "derail" too far







3-5 hours on an ordinary desktop!

Existing works:

Dozens of M steps for imitation learning

Hundreds of M steps for end2end learning





• Same reference, different velocities

$$v_{\chi}=0.6$$
m/s,  $v_{\gamma}=0$ m/s

$$v_x = 0$$
 m/s,  $v_y = 0.3$ m/s



$$v_x = 0.6 \,\mathrm{m/s}, \, v_y = 0 \,\mathrm{m/s}$$
  $v_x = 0 \,\mathrm{m/s}, \, v_y = 0.3 \,\mathrm{m/s}$   $v_x = -0.4 \,\mathrm{m/s}, \, v_y = -0.2 \,\mathrm{m/s}$ 









Left Foot Height Command:  $[v_x, v]$  $y = h \sin \frac{2\pi}{T} t$ Stance Right Foot Height

• Different styles: changing  $h - \Delta h$ 

$$h - \Delta h = 0.12$$
  $h - \Delta h = 0.2$ 

$$h - \Delta h = 0.2$$









• Different styles: changing  $\Delta h/h$  $\Delta h/h = 0.2$ 

$$\Delta h/h = 0.3$$













• Different styles: changing T

$$T = 0.72 \, \text{s}$$
  $T = 0.84 \, \text{s}$ 

$$T = 0.84 s$$









#### **Future Works**

- What we have done:
  - Using this technique to verify the agility of a bipedal robot that is undergoing iterative design
- What's the next:
  - To adapt the sine waves to more periodical motions
  - To achieve sim2real on different robot platforms



# Thanks for watching!

Qi Wu<sup>\*1</sup>, Chong Zhang<sup>\*2</sup>, Yanchen Liu<sup>3</sup>
<sup>1</sup>Department of Mechanical Engineering, Tsinghua University
<sup>2</sup>Department of Precision Instrument, Tsinghua University
<sup>3</sup>Department of Informatics, Technical University of Munich

Corresponding: Qi Wu, <u>wuqi19@mails.tsinghua.edu.cn</u> Codes and this PPT: <u>https://github.com/WooQi57/sin-cassie-rl</u>

