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Introduction

* Deep Reinforcement Learning (DRL)
* A new solution to legged locomotion
* An easy solution to dynamics modelling

Yindoor Experinfé‘nts
Turning

e s ot T i :
v e 4% STRIRENS e

[Miki, T., et al. Science Robotics, 2022]
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[Li, Z., et al. ICRA 2021]




Introduction

 DRL implementation for bipedal gaits

 End-2-end learning: time-consuming

 Dozens of hours for training [Siekmann, J., et al. RSS 2021, & ICRA2021]

« GPU-based simulation hasn't shown enough fidelity for bipedal robots.
* Motion imitation: costly mocaps or manually tuned references

« Human motion capture is costly and anthropomorphic.




Human motion capture: costly, limited styles, anthropomorphic!
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Bohez, Steven, et al. Imitate and Repurpose: Learning Reusable Robot Movement
Skills From Human and Animal Behaviors.




Introduction

 DRL implementation for bipedal gaits

 End-2-end learning: time-consuming

 Dozens of hours for training [Siekmann, J., et al. RSS 2021, & ICRA2021]

« GPU-based simulation hasn't shown enough fidelity for bipedal robots.
* Motion imitation: costly mocaps or manually tuned references

« Human motion capture is costly and anthropomorphic.
 Manually tuned references require lots of expert knowledge and efforts.




Manually tuned reference: cheaper than mocaps, requiring knowledge and efforts

Spring Mass Model

Reduced Order
Model Library

Green, Kevin, et al. "Learning spring mass locomotion: Guiding policies with a reduced-order model."

Other choices:
Manually tuned controller: Xie, Z. , et al. IROS 2018
HZD gait library: Li, Z. , et al. ICRA 2021
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Introduction

 DRL implementation for bipedal gaits

 End-2-end learning: time-consuming
 Dozens of hours for training [Siekmann, J., et al. RSS 2021, & ICRA2021]
« GPU-based simulation hasn't shown enough fidelity for bipedal robots.
* Motion imitation: costly mocaps or manually tuned references
« Human motion capture is costly and anthropomorphic.
 Manually tuned references require lots of expert knowledge and efforts.
« Gait styles are limited to the references and difficult to tune.

* Massive expert efforts for reward & hyperparameter tuning




Introduction

 Our motivation
« Can the references be cheap and easy to obtain?

* A sine wave suffices!
« Can the rewards be easy to tune?

 Few reward terms without special efforts to tune!
« Can the learning process be efficient?

« As efficient as those with manually-tuned references!
 Anything else?

* Deploy a very simple system and focus on skill learning, as suggested by
previous works [Siekmann, J., et al. RSS 2021]:
sim2real and skill learning can be separately treated.




Our Method

* The very simple reference

 Easy to generate * The walking styles

« Easy to tune the styles * h — Ah for foot clearance:
higher or lower

- Ah
A Left Foot Height « — for double-support span:

Command: [v,, v,] h
/\/ S also faster or slower feet
% 2 : up and down

/ Left Right A2an R =" S;]Tt - .
Swing | || Swing \” t « T for frequency: higher or
Stance / T lower
N 2w ,
\ Right Foot Height vet, = Tiere = max(0, hsin(—t + ¢o) — Ah),

2
hrefg — hright — maX((L hsm(%t + Qb() + 77) — Ah)
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Our Method

* The very simple system
Stable-Baselines3 Library

_ , Reward — NN with 2 hidden FC layers (512 units)
[ Sine Wave 7 l PPO Optimization ] Default hyperparameters
Update
/ Robot \
4 )
Phase ]— D :?
Policy |Targets G

Command } Network —»[ PD Control ]

2000
Robot State ]— 2000 H o

A 0

Robot State
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Our Method

* The very simple rewards

[Peng, X. B. , et al. SIGGRAPH 2018]: joint position, joint velocity, end-effector
position, and CoM position (4) terms for imitation; task specific terms for performance

[Xie, Z. , et al. IROS 2018]: joint position, pelvis position, and pelvis orientation (3)
terms for imitation; shin spring term for regularization

[Li, Z. , et al. ICRA 2021]: joint position, pelvis position, pelvis translational
velocity, pelvis rotation, and pelvis rotational velocity (5) terms for imitation;
2 terms for regularization

Ours: 1 term for imitation, 2 terms for performance, 1 (but can be more)
term for regularization and 1 term for early termination
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Our Method

* The very simple rewards: 0.5r +0.57" + vk + 7T
* Imitation:

I *

) T

[ ] 'r' j—
0.052 1.0-0.4

= exp(—
e Performance;

. a penalty for surviving without pursuing imitation

° T.P — 0.75€Xp (_ distz(vpelvis;vcommand) ) + O_ZSQXP (_ diStz(Oripelvis,oristanding))

max(0.1%,0.5||Ycommand l?) 0.1

* Regularization:

o +R _ __ dist?(qshin,0)
r® = 0.1lexp( S 001 )

e Termination:

= —10 if early termination else 0: triggered when fall or “derail” too far
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Nominal Imitation Reward
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3-5hourson an
ordinary desktop!
Existing works:

Dozens of M steps for
imitation learning

Hundreds of M steps
for end2end learning
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Results

« Same reference, different velocities

vy = 0.6m/s, v, = 0m/s vy =0m/s, v, = 0.3m/s vy = —0.4m/s, v, = —0.2m/s

t(s)




A Left Foot Height

/ Command: [vy, vy]
Results A4\
K y = hsin—t

Left Right P2Ah N oty
Swing J Swing NP t
7
Stance T
v Right Foot Height

» Different styles: changing h — Ah

h—Ah = 0.12 h—Ah = 0.2

ANA
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Results

» Different styles: changing Ah/h
Ah/h = 0.2 Ah/h = 0.3

(c) v, versus h

Right Foot v. (m/s)
|
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Contact Points Before Lift _ _
TUm 16




Results

» Different styles: changing T
T =0.72s T=0.84s
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(c) v, versus h
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Future Works

« What we have done:

« Using this technique to verify the agility of a bipedal robot that
IS undergoing iterative design

« What's the next;

 To adapt the sine waves to more periodical motions
 To achieve sim2real on different robot platforms
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Thanks for watching!

Qi Wu'l> Chong Zhang™?, Yanchen Liu?
'Department of Mechanical Engineering, Tsinghua University
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Corresponding: Q1 Wu, wuqil9@mails.tsinghua.edu.cn
Codes and this PPT: https://github.com/Wo0Qi157/sin-cassie-rl
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